National Geospatial Digital Archive

Greg Janée

University of California at Santa Barbara
Overview

• One of 8 NDIIPP projects funded by Library of Congress
 – joint project with Stanford University

• Goal: long-term, wide-scale preservation of geospatial data

• Preservation architecture & prototype archive
 – single-digit terabytes
 – CaSIL: GIS datasets, remote-sensing imagery, aerial photography
 – Rumsey collection: scanned maps
Common starting hypothesis

recent content

now

take action

now

+ 100 years
NGDA starting hypothesis

“mid-century perspective”

content \[\text{now - 50}\] \(\rightarrow\) old content \[\text{now}\] \(\rightarrow\) ancient content \[\text{now + 50}\]

\(\uparrow\) take action
Mid-century perspective

• Repeated migrations across storage media and storage systems
 – past and future

• Repeated migrations across archive management systems
 – each possibly necessitating transformation and reorganization of archived content

• Repeated handoffs between institutions
 – each implementing different policies
Mid-century perspective

- Migrations/handoffs may occur asynchronously
 - different evolution rates, pressures

- Ability to interpret archived data may change and deteriorate

- Information value, resource levels change over time
 - need an ultra-low cost, “fallback” preservation mode
NGDA architecture goals

• Facilitate migration at all levels
 – separate levels to accommodate asynchronicity

• Provide fallback mode
 – for individual objects and entire archives

• Capture semantics

• Cheap & easy
 – or preservation can’t be large-scale
Semantics

• *Def*: knowledge needed to interpret and use information that is not shared by the target user community

• Simple documents
 – descriptive metadata, format specification sufficient

• Remote sensing imagery
 – need data interpretation, usage, processing, calibration
 – in practice, such semantics are packaged separately

• Climate data records
 – require periodic reprocessing
Ozone reprocessing requirements

- xDRs
- Delivered IPs
- Engineering data (incl. C3S data if not in RDRs)
- Upload files
- Databases
- Software (source code)
- Calibration artifacts
 - data
 - analysis tools
 - tables
 - logs
 - notebooks
 - instrument design
- All project documentation
- All scientific papers
- All reports

Courtesy of Mike Linda, NASA GSFC; from 2006 NOAA CLASS workshop
NGDA architecture

1. format registry
 - maintains directory of formats; stores specification documents; models inter-format relationships

2. registry wiki
 - supports collaborative management of format registry

3. ingest crawler
 - crawls provider content; maps content to archival objects; maintains identifier associations

4. NGDA archive data model
 - defines uniform, self-contained representation of archival objects, object semantics, and inter-object relationships

5. storage API
 - abstracts storage subsystem

6. reliable storage subsystem
 - Archivas cluster

7. archive server
 - builds and validates archival objects; associates objects with semantics

8. webview
 - crawlable, HTML view of archive

9. ADL
 - provides spatiotemporal, other types of search; integrated OAI server

10. ADL mapper
 - maps archival objects to ADL items

11. ingest
 - “single item ingest”; archive management

12. export

Greg Janée • Geospatial data preservation workshop • 2006-10-27
Federation interaction points

1. Format registry...
 • provides a central place for data providers to describe file semantics, and for archives and end users to reference those semantics.

2. Ingest services and tools...
 • allow data providers to transfer content into an archive.

3. Access services...
 • allow end users to search for and use content across the entire federation, and allow third parties to provide value-added access services.

4. Archive data model...
 • defines a uniform representation of archive content; archives that implement or map to the data model can employ NGDA tools to provide access and export services.

5. Export function...
 • transfers archive content in bulk to other archives for replication and migration purposes; ancillary object semantics are automatically included.
Storage system requirements

• Req’s:
 – associate UUIDs/RIDs with bitstreams
 – retrieve global/local bitstream by UUID/RID
 – determine (parent) UUID of any bitstream
 – list all UUIDs

• Satisfied by:
 – any filesystem
 – any kind of UUIDs
 • tag:library.ucsb.edu,2005:identifier
Data model

• Physical implementation of OAIS logical model
 – filesystem
 – files and directories identified by UUIDs
 – XML manifests

• Organizing principle: archival object
 – one individually reusable unit of information
 – groups metadata, data, derivatives, etc.

• Inter-object relationships
 – semantic definitions
 – lineage
 – collections and other aggregations
Archival objects

manifest

component
Towards a more layered architecture
Towards a more layered architecture

archive
- asserts control
- defines policy

archive object layer
- defines standard structuring of content
- maintains persistent associations to semantics

storage virtualization layer
- provides structure-neutral storage
- interoperability between archival, working storage
- implements storage policies
Questions?